

(Protected by US Patent 10752492B2)

DATASHEET

The MEMS Series Photonic Time Delay digitally varies the optical delay time in fiber by selectively routing optical signal through N fiber loops whose lengths increase successively by a power 2 of the increment time delay ΔT . Since each switching element allows the signal to either pass or bypass a fiber loop, a delay T may be inserted, which can take any value (in increments of ΔT) up to the maximum value ($T = (2^{N+1}-1) \Delta T$).

This is achieved using a patent pending MEMS switching configuration and activated via an direct DC electrical control signal.

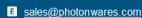
The driver is available with USB and/or RS232 control interface separately.

Features

- 7-bit Resolution or more
- High Reliability
- Compact

Applications

- Phase-Array Antennas
- Instrumentation

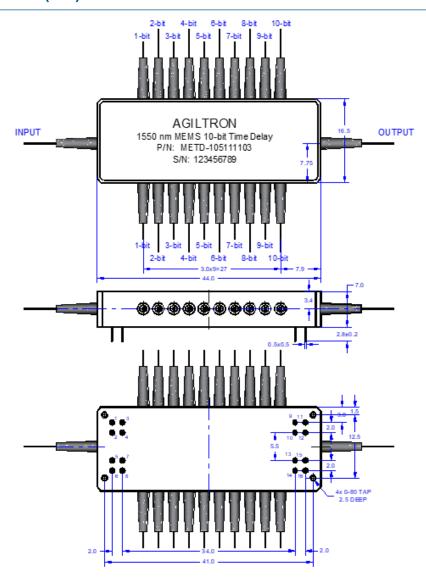

Specifications

Parameter	Min	Typical	Max	Unit
Wavelength Band	780	1550	2000	nm
Insertion Loss ^[1]		3	4.5	dB
Polarization Dependent Loss (SM)		0.1	0.2	dB
Polarization Extinction Ratio (PM)	18	24		dB
Cross Talk	40	50		dB
Return Loss	50	55		dB
Switching Time (fall, rise)		2	10	ms
Fiber Segment Number	4		10	
Delay Time Range ^[2]			10	ms
Polarization Mode Dispersion (SM)		0.1	0.2	ps
Operating Temperature	-5		70	°C
Storage Temperature	-40		85	°C
Optical Power Handling		300		mW
Package Dimension ^[1]		See drawing		

Notes:

- [1]. It is defined for 4-bit Time Delay with the short fiber loops. The maximum Insertion Loss is: 5.6dB for 5-bit version, 6.8 dB for 6-bit, 7.8 dB for 7-bit, and 12.0 dB for 10-bit respectively.
- [2]. The delay fiber loops can be spliced in precise control per customer's request.

Rev 08/23/23



(Protected by US Patent 10752492B2)

Mechanical Dimensions (mm)

^{*} Product dimensions may change without notice. This is sometimes required for non-standard specifications.

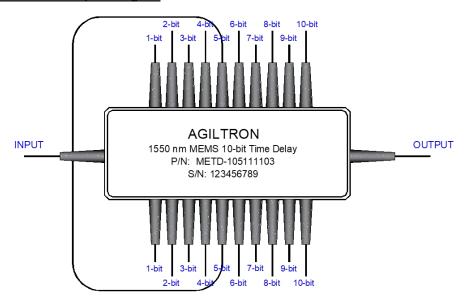
Electrical Driving Requirements

© Photonwares Corporation

The electrical driver is available with USB and/or RS232 control interfaces and Windows™ GUI. It comes with a wall-plug 5V power supply. Please contact us it.

Driving Voltage	Min	Typical	Max	Unit
+V	4.0	4.2	4.5	VDC
Power Consumption (For each MEMS Chip)		170		mW

(Protected by US Patent 10752492B2)

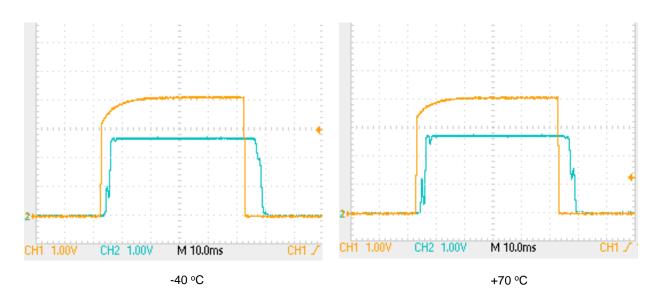


DATASHEET

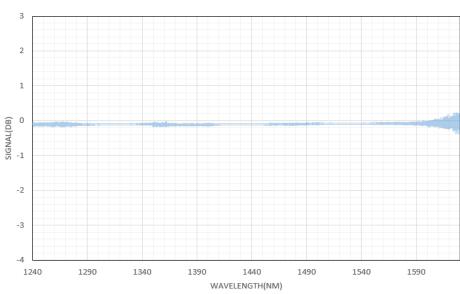
Electrical Driving Requirements

Status -	Pin Number										
	1	2	3	4	5	9	10	11	12	13	6, 7, 8, 14, 15
Bypass	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
1 st bit	0	Н	Н	Н	Н	Н	Н	Н	Н	Н	
2 nd bit	Н	0	Н	Н	Н	Н	Н	Н	Н	Н	
3 rd bit	Н	Н	0	Н	Н	Н	Н	Н	Н	Н	
4 th bit	Н	Н	Н	0	Н	Н	Н	Н	Н	Н	
5 th bit	Н	Н	Н	Н	0	Н	Н	Н	Н	Н	GND
6 th bit	Н	Н	Н	Н	Н	0	Н	Н	Н	Н	
7 th bit	Н	Н	Н	Н	Н	Н	0	Н	Н	Н	
8 th bit	Н	Н	Н	Н	Н	Н	Н	0	Н	Н	
9 th bit	Н	Н	Н	Н	Н	Н	Н	Н	0	Н	
10 th bit	Н	Н	Н	Н	Н	Н	Н	Н	Н	0	

Delay Path Definition: ex. 5th-bit path diagram



(Protected by US Patent 10752492B2)



Typical Switching Rise/Fall at -40°C and 70°C

Typical Insertion Loss vs Wavelength (1240-1630nm)

1x2 MEMS Switch

(Protected by US Patent 10752492B2)

Ordering Information

							0	
Prefix	Туре	Wavelength	Configuration	Switch type	Fiber Type	Fiber Cover	Delay Range	Connector
METD-	2-Bit = 02 3-Bit = 03 4-Bit = 04 5-Bit = 05 6-Bit = 06 7-Bit = 07 8-Bit = 08 9-Bit = 09 10-Bit = 10 Special = 0	1260~1620 =1 Special=0	Standard = 1 Inversion = 2 Special = 0	Non-latching=2 Special=0	SMF-28=1 PM 1550=B PM 1310=D PM 980=E PM 850=F Special=0	Bare fiber = 1 0.9mm tube = 3 Special = 0	Customized=0	None=1 FC/PC=2 FC/APC=3 SC/PC=4 SC/APC=5 ST/PC=6 LC/PC=7 Special=0

Fiber Core Alignment

Note that the minimum attenuation for these devices depends on excellent core-to-core alignment when the connectors are mated. This is crucial for shorter wavelengths with smaller fiber core diameters that can increase the loss of many decibels above the specification if they are not perfectly aligned. Different vendors' connectors may not mate well with each other, especially for angled APC.

Fiber Cleanliness

Fibers with smaller core diameters (<5 µm) must be kept extremely clean, contamination at fiber-fiber interfaces, combined with the high optical power density, can lead to significant optical damage. This type of damage usually requires re-polishing or replacement of the connector.

Maximum Optical Input Power

Due to their small fiber core diameters for short wavelength and high photon energies, the damage thresholds for device is substantially reduced than the common 1550nm fiber. To avoid damage to the exposed fiber end faces and internal components, the optical input power should never exceed 20 mW for wavelengths shorter 650nm. We produce a special version to increase the how handling by expanding the core side at the fiber ends.

